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Laplace-Carson transform (LC)

f (X ) 7→ F (P) = P1

∫ ∞
0

e−PX f (X )dX ,

X = x1, . . . xn, P = p1, . . . pn, P1 = p1 . . . pn, PX = 〈X ,P〉,
dX = dx1 . . . dxn.

At that η(X ) 7→ 1.
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PDE system

Consider a system

K∑
k=1

M∑
m=0

aj
mk

∂m

∂m1x1 . . . ∂mnxn
uk(X ) = fj , j = 1, . . .K , (1)

where m1 + . . .+ mn = m, uk(X ), k = 1, . . . ,K , – are unknown
functions of X = x1, . . . , xn, aj

mk – constants.
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Initial conditions

We denote by

Γ = (Γ1, . . . , Γn), β = (β1, . . . , βn), βi = 0, . . .mi

a set of indexes such that the corresponding derivative of

uk(X )

equals
uk
β,Γ(X Γ)

at the point X with zeros at

Γ1, . . . , Γn

places.
For example, if zeros stand at the places with the numbers l1, l2, l3, then
Γ = (0, . . . , 0, l1, 0, . . . , 0, l2, 0, . . . , 0, l3, 0, . . . , 0), or simply Γ = (l1, l2, l3)
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For example for a function u5

u5
(2,2),(1,2)(X

1,2) =
∂4

∂2x1∂2x2
u5(0, 0, x3, . . . xn). (2)

All functions
fj , uk

β,Γ(X Γ)

are of exponential type.
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LC of PDE system

Let LC : uk 7→ Uk .
Then

LC :
∂m

∂m1x1 . . . ∂mnxn
uk(X ) 7→ (−1)γ

m1,...,mn∑
j1=0,...,jn=0

pm1−j1
1 . . . pmn−jn

n Uk
β,Γ(PΓ)

Here γ = ‖Γ‖ – the length of Γ, β = (j1, . . . , jl). Note, that
U5

(0,0)(0,0)(P) = U5(P).
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For example, in (2) for n = 4 we have:

LC : ∂4

∂2x1...∂m2x2
u5(X ) 7→

p2
1p2

2U5
(0,0)(0,0)(x1, x2, x3, x4)−

−p2
1p2

2U5
(0,0)(1,0)(x2, x3, x4)− p1p

2
2U5

(1,0)(1,0)(x2, x3, x4)−

−p2
1p2

2U5
(0,0)(0,1)(x1, x3, x4)− p2

1p2U
5
(0,1)(0,1)(x1, x3, x4)+

p2
1p2

2U5
(0,0)(1,2)(x3, x4) + p1p

2
2U5

(1,0)(1,2)(x3, x4)+

+p2
1p2U

5
(0,1)(1,2)(x3, x4) + p1p2U

5
(1,1)(1,2)(x3, x4).
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Denote

Φk
m = (−1)γ

m1,...,mn∑
j1=0,...,jl =0

pm1−j1
1 . . . pmn−jn

n Uk
β,Γ(PΓ)− PmUk(P)

Pm = pm1
1 . . . pmn

n
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As a result of Laplace-Carson transform of the system (1) according to
initial condition we obtain an algebraic system relative to Uk .

K∑
k=1

M∑
m=0

aj
mkU

k = Fj −
M∑

m=0

aj
mkΦk

m, j = 1, . . .K , (3)
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Denote by D the determinant of the system (3),Di – the maximal order
minors of the extended matrix of (3). A case when there is a set S of
zeros of D with infinite limit point at Repk > 0, k = 1, . . . , n is of most
interest. Solving the system (3) we obtain Uk as fractions with D in the
denominators. The inverse Laplace-Carson transform is possible if
αk , k = 1, . . . , n exist such that these functions are holomorphic in the
domain Repk > αk ,. So we make a demand: Di = 0 at S . This demand
produces requirements to initial and boundary conditions, they turns to
be dependent. We obtain the so-called compatibility conditions.
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For example the Laplace-Carson transform of the equation

∂u

∂x
− ∂u

∂y
= f (x , y)

with initial and boundary conditions u(0, y) = a(y), u(x , 0) = b(x) is the
algebraic equation

(p − q)U(p, q) = F (p, q) + pA(q)− qB(p).

Here a(y) 7→ A(q), b(x) 7→ B(p), f (x , y) 7→ F (p, q). We demand: if
p = q, then F (p, q) + pA(q)− qB(p) = 0, i.e.

F (p, p) + pA(p)− pB(p) = 0. (3)

The inverse Laplace-Carson transform produces the compatibility
condition:

a(x)− b(x) +

∫ x

o

f (x − s, s)ds = 0.

The algorithm of solving the system (1) consists of three main steps:
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Example

∂f

∂x
+
∂g

∂y
= x ,

∂f

∂y
+
∂g

∂x
= y ,

f = f (x , y); g = g(x , y)
Initial conditions
f (0, y) = a(y); f (x , 0) = b(x); g(0, y) = c(y); g(x , 0) = d(x).
LC : f (x , y) 7→ u(p, q), g(x , y) 7→ v(p, q)
a(y) 7→ α(q), b(x) 7→ β(p)
c(y) 7→ δ(q), d(x) 7→ γ(p).
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pu − pα(q) + qv − qγ(p) =
1

p
,

qu − qβ(p) + pv − pδ(q) =
1

q
,

Then

u = −−αp2 + βq2 + (δ − γ)pq

p2 − q2

v = −−p2 + q2 + (α− β)p2q2 − (δp2 − γq2)pq

pq(p2 − q2)
q = p

α− β + γ − δ = 0

β = 0; γ =
2

p
; δ =

2

q
; α = 0;

u = − 2

p + q

v = −p + 2p2 + q + 2q2 + 2pq

pq(p + q)
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LC−1 :

f = −
{

2y , y < x ,
2x , y ≥ x ,

g =

{
(2 + y)x , y < x ,
y(2 + x) , y ≥ x .
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I. Laplace-Carson transform of the system (1).
II. Solving of the algebraic system (2).
III. Establishing of compatibility conditions.
IV. Inverse Laplace-Carson transform of the solutions of (2) – it is the
solution of the system (1).
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To provide the symbolic character of all computations we carry out the
following:
1) Represent all given functions as sums (or series) of exponents with
polynomial coefficients.
2) Factorize D (as full as possible).
3) Represent the solution of algebraic system as sums (or series) of
algebraic fractions with exponential coefficients.
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